Difference between revisions of "АСИМПТОТА"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
м (1 версия)
м (→‎top: категория кошуу)
 
(3 intermediate revisions by 2 users not shown)
1 -сап: 1 -сап:
(гр. asymptotes – дал келбөөчү) - координаталар башталмасынан чексиз алыста-<br>
'''АСИМПТОТА''' (гр. asymptotes – дал келбөөчү) - координаталар башталмасынан чексиз алыста-<br>
[[File:АСИМПТОТА_83.png | thumb | none]]<br>
[[File:АСИМПТОТА_83.png | thumb | none]]<br>
[[File:АСИМПТОТА_84.png | thumb | none]]<br>
[[File:АСИМПТОТА_84.png | thumb | none]]<br>
[[File:АСИМПТОТА_85.png | thumb | none]]<br>
[[File:АСИМПТОТА_85.png | thumb | none]]<br>
ган сайын ийри сызыкка чексиз жакындай
ган сайын ийри сызыкка чексиз жакындай берген түз сызык. А үч түргө бөлүнөт: 1. <br>|х| → ∞'', у→а'' болгондо ''у = а'' түз сызыгы – горизонталь А.; 2.<br> ''х —> b'' , |у| ''—>'' ∞ болгондо ''х = b'' түз сызыгы – вертикаль А.; 3. <br> ''х'' → ∞. ''f(x)'' → ∞ болгондо ''у = кх + Ь'' ( мында     )
берген түз сызык. А үч
түргө бөлүнөт: 1. I.<br>
|х| → ∞'', у→а'' болгондо ''у = а'' түз сызыгы – горизонталь А.;<br> ''х —> b'' , |j| ''—>'' ∞ болгондо ''х = b'' түз сызыгы – вертикаль А.;<br> ''х'' → ∞. ''f(x)'' → ∞ болгондо ''у = кх + Ь'' ( мында <math>Формула 1</math>)
[[File:АСИМПТОТА_86.png | thumb | Формула 1]]<br>
[[File:АСИМПТОТА_86.png | thumb | Формула 1]]<br>
b = lim<sub>x→∞</sub> [f(x) – kx]<br>
'''b = lim<sub>x→∞</sub> [f(x) – kx]'''<br><br>
<math>Формула 2</math><br>
[[File:АСИМПТОТА_87.png | thumb | Формула 2]]<br>
[[File:АСИМПТОТА_87.png | thumb | Формула 2]]<br>
түз сызыгы жантык А. ден аталат. 2-тартиптеги ийри сызыктардан ''гипербола''
түз сызыгы жантык Асимптота деп аталат. 2-тартиптеги ийри сызыктардан ''гипербола'' гана Асимптотага ээ болот. Математикалык анализде Асимптота түшүнүгү чоң мааниге ээ.<br>''Ад.: Кудрявцев Л. Д.'' Математический анализ в двух томах. М., 1980. ''Б.''  
гана А-га ээ болот. Мат. анализде А. түшүнүгү
чоң мааниге ээ.<br>
''Ад.: Кудрявцев JI. Д.'' Математический анализ в двух
томах. М., 1980. ''Б. Э. Назаркулова.''<br>


''Э.Назаркулова.''<br>
[[Категория:1-Том]]

10:29, 12 Сентябрь (Аяк оона) 2024 -га соңку версиясы

АСИМПТОТА (гр. asymptotes – дал келбөөчү) - координаталар башталмасынан чексиз алыста-

АСИМПТОТА 83.png


АСИМПТОТА 84.png


АСИМПТОТА 85.png


ган сайын ийри сызыкка чексиз жакындай берген түз сызык. А үч түргө бөлүнөт: 1.
|х| → ∞, у→а болгондо у = а түз сызыгы – горизонталь А.; 2.
х —> b , |у| —> ∞ болгондо х = b түз сызыгы – вертикаль А.; 3.
х → ∞. f(x) → ∞ болгондо у = кх + Ь ( мында )

Формула 1


b = limx→∞ [f(x) – kx]

Формула 2


түз сызыгы жантык Асимптота деп аталат. 2-тартиптеги ийри сызыктардан гипербола гана Асимптотага ээ болот. Математикалык анализде Асимптота түшүнүгү чоң мааниге ээ.
Ад.: Кудрявцев Л. Д. Математический анализ в двух томах. М., 1980. Б.

Э.Назаркулова.