АРАЛАШ КӨБӨЙТҮНДҮ
АРАЛАШ КӨБӨЙТҮНДҮ – Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}}
вектору м-н Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{b}}
ж-а Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{c}}
векторлорунун вектордук көбөйтүндүсүнүн скалярдык көбөйтүндүсү: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle (\vec{a}, \vec{b}, \vec{c})}
= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle (\vec{a}, [\vec{b}, \vec{c}])}
. А. к. төмөнкү касиеттерге ээ: эгер Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}}
= 0, же Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{b}}
= 0,
же Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{c}}
= 0 же Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}, \vec{b}, \vec{c}}
векторлору компланардуу болсо Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle (\vec{a}, \vec{b}, \vec{c})}
= (й,с,а) = (с,а,Щ = ~{Ъ,а,с) = ~[а,с,Ъ) =
= -{с,Ъ,а^,{а,Ъ,с^ = 0. Компланардуу эмес а,Ь,с векторлорунун А. к-сү ал векторлор аркылуу
тургузулган оң же терс белгиде алынган парал-
лелепипедцин көлөмүнө барабар: V = ±(а,\Ь,с^. Эгер а, Ъ, с векторлору оң үчүлтүктү түзсө, анда көлөм н оң (+) белги м-н (а, сүрөт), ал эми
сол үчүлтүктү түзсө, көлөм V терс (-) белги м-н алынат (б, сүрөт). Эгер а,b,с векторлору
{X1, X2, X3}, { Y1, Y2, Y3}, { Z1, Z2, Z3} координаталарына ээ болсо, анда ,
Б. Э. Канетов.