АНАЛИЗДИК ГЕОМЕТРИЯ
АНАЛИЗДИК ГЕОМЕТРИЯ– геометриянын объекттерди (түз сызык, тегиздик, ийри сызык жана экинчи тартиптеги беттер) координаталар методунун негизинде алгебралык түшүнүктөргө таянып изилдөөчү бөлүмү. Координата жана элементардык алгебранын ыкмалары – А. г-нын негизги изилдөө булактары. Координата ыкмасынын пайда болушу 17-к-да астрономия, механика жана техниканын дүркүрөп өсүшүнө тыгыз байланыштуу болгон. Р. Декарт өзүнүн «Геометриясында» (1637) бул ыкманы так жана толук баяндаган. Бул ыкманын негизги идеялары анын замандашы П. Фермага белгилүү болгон. А. г-нын өнүгүшү Г. Лейбниц, И. Ньютон, өзгөчө Л. Эйлердин эмгектери менен байланыштуу. А. г-ны Ж. Лагранж механикага, ал эми Г. Монж дифференциалдык геометрияга колдонушкан. Учурда А. г-нын ыкмалары математика, механика, физика ж. б. илимдердин түрдүү тармактарында кеңири колдонулууда. Тегиздиктеги координаталар ыкмасынын негизги идеясы – сызыктын геометриялык. касиеттери анализдик жана алгебралык жол менен анын F(x, у)=О теңдемесинин касиеттерин окуп-үйрөнүү аркылуу аныкталат. Тегиздиктеги А. г-да тегерек конустун тегиздик менен кесилишинен пайда болгон эллипс, гипербола, параболанын геометриялык касиеттери изилденет. Бул сызыктар табият таанууда, техниканын маселелеринде көп кездешет. Тегиздиктеги А. г-да биринчи жана экинчи тартиптеги алгебралык сызыктар изилденет. Биринчи тартиптеги сызыктар түз сызыктар болушат жана тескерисинче, ар бир түз сызык биринчи даражадагы алгебралык теңдеме Ах+Ву+С=0, экинчи тартиптеги ийри сызыктар Ax2+Bxy+Cy2+Dx+Ey+L=0 теңдемеси менен аныкталат. Декарттык тик бурчтуу координаталар системасын тандоо аркылуу сызыктын тендемесин эң жөнөкөй түргө келтирүү жана аны изилдөө сызыктарды изилдөөнүн жана класстарга бөлүүнүн негизги методу болуп саналат. Ушундай жол менен экинчи тартиптеги каалаган сызыктын теңдемеси төмөнкү жөнөкөй теңдемелердин бирине келтирилиши мүмкүн: – эллипс;
– гипербола;
– парабола; – түгөй түз сызыктар. Мейкиндиктеги А. г-да тегиздиктеги сыяктуу эле өз ара перпендикуляр үч түз сызыктан турган Охуz декарттык тик бурчтуу координаталар системасы түзүлөт. Тегиздиктин М чекитинин координаталары: х – абсцисса, у – ордината, z – аппликата сандары менен аныкталып, М(х, у, z) түрүндө жазылат. Мейкиндикте тегиздик Ax+By+Cz+D=0 теңдемеси менен аныкталат. Биринчи тартиптеги алггебралык беттер бир гана тегиздик деп түшүндүрүлөт. Экинчи тартиптеги беттер төмөнкү тендеме менен аныкталат: Ax2+By2+Cz2+Dxy+Eyz+Fxz+Gx+Hy+Mz+N=0. Бул беттерди изилдөөнүн жана классификациялоонун негизи ыкмасы – алардын тендемелери кыйла жөнөкөй декарттык тик бурчтуу координаталар системасын тандоо жана ушул жөнөкөй теңдемени изилдөө. Экинчи тартиптеги беттердин негизгилери:
– эллипсоид; – бир көндөйлүү гиперболоид; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle {x^2 \over a^2 } + {y^2 \over b^2} - {z^2 \over c^2} = -1}
– эки көндөйлүү гиперболоид; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle 2z = {x^2 \over a^2 } + {y^2 \over b^2}}
– эллипстик параболоид; Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle 2z = {x^2 \over a^2 } - {y^2 \over b^2}}
– гиперболалык параболоид. Экинчи тартиптеги бул беттер механикада, катуу телолор физикасында, теориялык физикада, инженердик иштерде ж. б. кеңири колдонулат. Ад.: Александров П. С. Лекции по аналитической геометрии. М., 1968; Ильин В. А., Позняк Э. Г. Аналитическая геометрия. М., 1967.
Б. Э. Канетов.