АНЫКТАГЫЧ
Jump to navigation
Jump to search
АНЫКТАГЫЧ , детерминант — n-тартиптеги квадраттык А= ||aij|| матрицасынын
(-1)ta1i1...a1in түрүндөгү мүчөлөрүнүн суммасы,
мында i1i2,..., in – 1, 2, ..., n сандарынын орундаштыруусу, t – орундаштыруунун инверсияларынын саны. Берилген
матрицасынын аныктагычы же , же det А деп белгиленет. А матрицасынын аныктагычы
n! мүчөлөрдөн турат:
n = 1 болсо, det А = а11, n=2 болсо, det А = а11а22 -а21а12 болот. А матрицасынын аныктагычын, анын сапчаларына көз каранды функция түрүндө караса ыңгайлуу: det А = D(a1, ..., an). Анда d:Mn→R(A→detA) чагылдыруусу төмөнкү үч шартты канааттандырат:
- 1) d(A) деген А матрицасынын каалагандай сапчаларынын сызыктуу функциясы:
D(a1, ..., λai + μbi,..., an) = λD(a1, ..., ai + ..., an) + μD(a1, ..., bi,..., an), мында λ, μ ᕮR;
- 2) эгер А матрицасынын аi сапчасын аi+ аj сапчасына i ≠ j алмаштыруу аркылуу В матрицасын алсак, анда d(A) = d(B);
- 3) d(En) = 1. Жогорку R – чыныгы сандардын көптүгү, Мn – бардык n – тартиптеги квадраттык матрицалардын жыйындысы, Еn – бирдик матрица. 1-3 шарттары d чагылдыруусун аныктайт, б. а. эгер d:Mn(R) → R чагылдыруусу 1–3 шарттарын канааттандырса, анда d(A)=detA. Ушундай жол менен A-тар аксиоматика түрүндө аныкталат.
Ад.: Курош А. Г. Курс высшей алгебры. М., 1975;Кострикин анын ичинде Введение в алгебру. М.,1977.
А. А. Чекеев, С. Токсонбаев.