АРАЛАШ КӨБӨЙТҮНДҮ
АРАЛАШ КӨБӨЙТҮНДҮ – вектору м-н ж-а векторлорунун вектордук көбөйтүндүсүнүн скалярдык көбөйтүндүсү: = . А. к. төмөнкү касиеттерге ээ: эгер = 0, же Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{b}} = 0, же Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{c}} = 0 же Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}, \vec{b}, \vec{c}} векторлору компланардуу болсо Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle (\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = - (\vec{b}, \vec{a}, \vec{c}) = - (\vec{a}, \vec{c}, \vec{b}) = - (\vec{c}, \vec{b}, \vec{a}), (\vec{a}, \vec{b}, \vec{c}) = 0 } . Компланардуу эмес Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}, \vec{b}, \vec{c}} векторлорунун А. к-сү ал векторлор аркылуу тургузулган оң же терс белгиде алынган параллелепипеддин көлөмүнө барабар: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle V = \pm (\vec{a}, [\vec{b}, \vec{c}])} . Эгер Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}, \vec{b}, \vec{c}} векторлору оң үчүлтүктү түзсө, анда көлөм V оң (+) белги м-н (а, сүрөт), ал эми
сол үчүлтүктү түзсө, көлөм V терс (-) белги м-н алынат (б, сүрөт). Эгер Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \vec{a}, \vec{b}, \vec{c}}
векторлору
{X1, X2, X3}, { Y1, Y2, Y3}, { Z1, Z2, Z3} координаталарына ээ болсо, анда ,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle (\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix} }
Б. Э. Канетов.