Difference between revisions of "АНЫКТАГЫЧ"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
7 -сап: 7 -сап:
\\ a_{n1} & a_{n2} & ...a_{nn}\end{vmatrix}</math>, же det А деп белгиленет. А матрицасынын аныктагычы  ''n!'' мүчөлөрдөн турат: ''n ='' 1 болсо, det ''А = а<sub>11, </sub> n=''2  болсо, det ''А =  а<sub>11</sub>а''<sub>22</sub> ''- а<sub>21</sub>а''<sub>12</sub> болот'''.''' ''А'' матрица&#0173;сынын аныктагычын, анын сапчаларына көз  каранды функция түрүндө караса ыңгайлуу: det ''А = D(a<sub>1</sub>, ..., a<sub>n</sub>)''. Анда ''d:M''<sub>n</sub>→R(A→detA) чагылдыруусу төмөнкү үч шартты канааттанды&#0173;рат:  1) ''d(A)''  деген А матрицасынын каалагандай сапчаларынын сызыктуу функциясы:
\\ a_{n1} & a_{n2} & ...a_{nn}\end{vmatrix}</math>, же det А деп белгиленет. А матрицасынын аныктагычы  ''n!'' мүчөлөрдөн турат: ''n ='' 1 болсо, det ''А = а<sub>11, </sub> n=''2  болсо, det ''А =  а<sub>11</sub>а''<sub>22</sub> ''- а<sub>21</sub>а''<sub>12</sub> болот'''.''' ''А'' матрица&#0173;сынын аныктагычын, анын сапчаларына көз  каранды функция түрүндө караса ыңгайлуу: det ''А = D(a<sub>1</sub>, ..., a<sub>n</sub>)''. Анда ''d:M''<sub>n</sub>→R(A→detA) чагылдыруусу төмөнкү үч шартты канааттанды&#0173;рат:  1) ''d(A)''  деген А матрицасынын каалагандай сапчаларынын сызыктуу функциясы:


D(a<sub>1</sub>, ..., λa<sub>i</sub> + μb<sub>i</sub>,..., a<sub>n</sub>) = λD(a<sub>1</sub>, ..., a<sub>i</sub> + ..., a<sub>n</sub>) + μD(a<sub>1</sub>, ..., b<sub>i</sub>,..., a<sub>n</sub>), мында λ'','' μ ᕮ''R'';    2) эгер ''А'' матрицасынын ''а<sub>i</sub>'' сапчасын ''а<sub>i</sub>+ аj'' сапчасына ''i ≠ j'' алмаштыруу аркылуу ''В'' матрицасын алсак, анда ''d(A) = d(B);''  3) ''d(E<sub>n</sub>) ='' 1. Жогорку ''R'' – чыныгы сандардын көптүгү, ''Мn'' – бардык ''n'' – тартиптеги квадраттык матрицалардын жыйындысы, ''Еn'' – бирдик матрица. 1-3 шарттары ''d'' чагылдыруусун аныктайт, б. а. эгер ''d:M<sub>n</sub>(R)'' → R чагылдыруусу 1–3 шарттарын канааттандырса,  анда d(A)=detA. Ушундай жол <span cat="ж.кыск" oldv="м-н">менен</span> A-тар аксиоматика түрүндө аныкталат.<br>Ад.: ''Курош А. Г.'' Курс высшей алгебры. М., 1975;''Кострикин <span cat="ж.кыск" oldv="А. И.">А.И..</span>'' Введение в алгебру. М.,1977.  
D(a<sub>1</sub>, ..., λa<sub>i</sub> + μb<sub>i</sub>,..., a<sub>n</sub>) = λD(a<sub>1</sub>, ..., a<sub>i</sub> + ..., a<sub>n</sub>) + μD(a<sub>1</sub>, ..., b<sub>i</sub>,..., a<sub>n</sub>), мында λ'','' μ ᕮ''R'';    2) эгер ''А'' матрицасынын ''а<sub>i</sub>'' сапчасын ''а<sub>i</sub>+ аj'' сапчасына ''i ≠ j'' алмаштыруу аркылуу ''В'' матрицасын алсак, анда ''d(A) = d(B);''  3) ''d(E<sub>n</sub>) ='' 1. Жогорку ''R'' – чыныгы сандардын көптүгү, ''Мn'' – бардык ''n'' – тартиптеги квадраттык матрицалардын жыйындысы, ''Еn'' – бирдик матрица. 1-3 шарттары ''d'' чагылдыруусун аныктайт, башкача айтканда эгер ''d:M<sub>n</sub>(R)'' → R чагылдыруусу 1–3 шарттарын канааттандырса,  анда d(A)=detA. Ушундай жол <span cat="ж.кыск" oldv="м-н">менен</span> A-тар аксиоматика түрүндө аныкталат.<br>Ад.: ''Курош А. Г.'' Курс высшей алгебры. М., 1975;''Кострикин <span cat="ж.кыск" oldv="А. И.">А.И..</span>'' Введение в алгебру. М.,1977.  


''А. А. Чекеев, С. Токсонбаев.''
''А. А. Чекеев, С. Токсонбаев.''

12:26, 22 -октябрь (Тогуздун айы) 2023 -деги абалы

АНЫКТАГЫЧ , детерминант — n-тартиптеги квадраттык А= ||aij|| матрицасынын (-1)ta1i1...a1in түрүндөгү мүчөлөрүнүн суммасы, мында i1i2,..., in – 1, 2, ..., n сандарынын орундаштыруусу, t – орундаштыруунун инверсияларынын саны. Берилген

матрицасынын аныктагычы же , же det А деп белгиленет. А матрицасынын аныктагычы n! мүчөлөрдөн турат: n = 1 болсо, det А = а11, n=2 болсо, det А = а11а22 - а21а12 болот. А матрица­сынын аныктагычын, анын сапчаларына көз каранды функция түрүндө караса ыңгайлуу: det А = D(a1, ..., an). Анда d:Mn→R(A→detA) чагылдыруусу төмөнкү үч шартты канааттанды­рат: 1) d(A) деген А матрицасынын каалагандай сапчаларынын сызыктуу функциясы:

D(a1, ..., λai + μbi,..., an) = λD(a1, ..., ai + ..., an) + μD(a1, ..., bi,..., an), мында λ, μ ᕮR; 2) эгер А матрицасынын аi сапчасын аi+ аj сапчасына i ≠ j алмаштыруу аркылуу В матрицасын алсак, анда d(A) = d(B); 3) d(En) = 1. Жогорку R – чыныгы сандардын көптүгү, Мn – бардык n – тартиптеги квадраттык матрицалардын жыйындысы, Еn – бирдик матрица. 1-3 шарттары d чагылдыруусун аныктайт, башкача айтканда эгер d:Mn(R) → R чагылдыруусу 1–3 шарттарын канааттандырса, анда d(A)=detA. Ушундай жол менен A-тар аксиоматика түрүндө аныкталат.
Ад.: Курош А. Г. Курс высшей алгебры. М., 1975;Кострикин А.И.. Введение в алгебру. М.,1977.

А. А. Чекеев, С. Токсонбаев.