Difference between revisions of "АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
м (→‎top: clean up, replaced: ж-а → <span cat='ж.кыск' oldv='ж-а'>жана</span> (2))
8 -сап: 8 -сап:
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин '''<math display="inline">2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math>  т'''үрүнө келет. Бул барабардык ''x'' тин бардык маанилеринде туура, ошондуктан ''х'' тин бирдей даражага ээ болгон мүчөлөрүнүн коэфф-тери барабар болот.  
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин '''<math display="inline">2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math>  т'''үрүнө келет. Бул барабардык ''x'' тин бардык маанилеринде туура, ошондуктан ''х'' тин бирдей даражага ээ болгон мүчөлөрүнүн коэфф-тери барабар болот.  


Анда: '''<math display="inline">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math>''' системасын чыгарып,  <math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: <math display="inline">  
Анда: '''<math display="block">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math>''' системасын чыгарып,  <math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: <math display="block">  
{(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)}  
{(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)}  
</math>.  А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал&#0173;дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис.,  <math display="inline">  
</math>.  А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал&#0173;дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис.,  <math display="inline">  
\int {(2x^2-3) \over x(x^2-4)} dx  
\int {(2x^2-3) \over x(x^2-4)} dx  
</math>  интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат:  <math display="inline">  
</math>  интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат:  <math display="block">  
\int {(2x^2-3) \over x(x^2-4)} dx =  
\int {(2x^2-3) \over x(x^2-4)} dx =  
\int \bigl({{3\over 4x} + {4 \over 8(x\pm2)}+{5\over 8(x+2)}}\bigr)dx =
\int \bigl({{3\over 4x} + {4 \over 8(x\pm2)}+{5\over 8(x+2)}}\bigr)dx =
{3 \over 4} \ln \left\vert x \right\vert  + {5\over 8} \ln \left\vert x^2-4 \right\vert + C  
{3 \over 4} \ln \left\vert x \right\vert  + {5\over 8} \ln \left\vert x^2-4 \right\vert + C  
</math>.  
</math>.  


Ад.: ''Фихтенголъц Г. М.'' Курс дифференциального и
Ад.: ''Фихтенголъц Г. М.'' Курс дифференциального и

12:56, 29 Декабрь (Бештин айы) 2022 -деги абалы

АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ – туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффтерин табуу ыкмасы. Р(х) жана Q(x) алг. көп мүчөлөрдөн турган түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы түрүндө туюнтууга болот, мында А,В,С, a,p,q чыныгы сандар жана х2 + рх + q квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., рационалдык туюнтмасы түрүндөгү бөлчөктөрдүн суммасына ажырайт. А, В, Сны табуу үчүн эки туюнтманы барабарлап, , жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин түрүнө келет. Бул барабардык x тин бардык маанилеринде туура, ошондуктан х тин бирдей даражага ээ болгон мүчөлөрүнүн коэфф-тери барабар болот.

Анда:

системасын чыгарып, маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы:
. А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал­дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис., интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат:
.


Ад.: Фихтенголъц Г. М. Курс дифференциального и интегрального исчисления. Т. 2.М., 1969; Смирнов В. И. Курс высшей математики. М., 1974.
Б. Э. Назаркулова.