Difference between revisions of "АНАЛИЗДИК ГЕОМЕТРИЯ"
м (→top: clean up, replaced: м-н → <span cat='ж.кыск' oldv='м-н'>менен</span> (8), ж-а → <span cat='ж.кыск' oldv='ж-а'>жана</span> (11)) |
(formula edit done) |
||
1 -сап: | 1 -сап: | ||
'''АНАЛИЗДИК ГЕОМЕТРИЯ'''– геометриянын объекттерди (түз сызык, тегиздик, ийри сызык <span cat='ж.кыск' oldv='ж-а'>жана</span> экинчи тартиптеги беттер) координаталар методунун негизинде алг. түшүнүктөргө таянып изилдөөчү бөлүмү. Координата <span cat='ж.кыск' oldv='ж-а'>жана</span> элементардык алгебранын ыкмалары – А. г-нын негизги изилдөө булактары. Координата ыкмасынын | '''АНАЛИЗДИК ГЕОМЕТРИЯ'''– геометриянын объекттерди (түз сызык, тегиздик, ийри сызык <span cat='ж.кыск' oldv='ж-а'>жана</span> экинчи тартиптеги беттер) координаталар методунун негизинде алг. түшүнүктөргө таянып изилдөөчү бөлүмү. Координата <span cat='ж.кыск' oldv='ж-а'>жана</span> элементардык алгебранын ыкмалары – А. г-нын негизги изилдөө булактары. Координата ыкмасынын | ||
пайда болушу 17-к-да астрономия, механика <span cat='ж.кыск' oldv='ж-а'>жана</span> техниканын дүркүрөп өсүшүнө тыгыз байланыштуу болгон. Р. Декарт өзүнүн «Геометриясында» (1637) бул ыкманы так <span cat='ж.кыск' oldv='ж-а'>жана</span> толук баяндаган. Бул ыкманын негизги идеялары анын замандашы П. Фермага белгилүү болгон. А. г-нын өнүгүшү Г. Лейбниц, И. Ньютон, өзгөчө Л. Эйлердин эмгектери <span cat='ж.кыск' oldv='м-н'>менен</span> байланыштуу. А. г-ны Ж. Лагранж механикага, ал эми Г. Монж дифференциалдык геометрияга колдонушкан. Учурда А. г-нын ыкмалары математика, механика, физика ж. б. илимдердин түрдүү тармактарында кеңири колдонулууда. Тегиздиктеги координаталар ыкмасынын негизги идеясы – сызыктын геом. касиеттери анализдик <span cat='ж.кыск' oldv='ж-а'>жана</span> алг. жол <span cat='ж.кыск' oldv='м-н'>менен</span> анын ''F(x, у)=''О теңдемесинин касиеттерин окуп-үйрөнүү аркылуу аныкталат. Тегиздиктеги А. г-да тегерек конустун тегиздик <span cat='ж.кыск' oldv='м-н'>менен</span> кесилишинен пайда болгон эллипс, гипербола, параболанын геом. касиеттери изилденет. Бул сызыктар табият таанууда, техниканын маселелеринде көп кездешет. Тегиздиктеги А. г-да биринчи <span cat='ж.кыск' oldv='ж-а'>жана</span> экинчи тартиптеги алг. сызыктар изилденет. Биринчи тартиптеги сызыктар түз сызыктар болушат <span cat='ж.кыск' oldv='ж-а'>жана</span> тескерисинче, ар бир түз сызык биринчи даражадагы алг. теңдеме | пайда болушу 17-к-да астрономия, механика <span cat='ж.кыск' oldv='ж-а'>жана</span> техниканын дүркүрөп өсүшүнө тыгыз байланыштуу болгон. Р. Декарт өзүнүн «Геометриясында» (1637) бул ыкманы так <span cat='ж.кыск' oldv='ж-а'>жана</span> толук баяндаган. Бул ыкманын негизги идеялары анын замандашы П. Фермага белгилүү болгон. А. г-нын өнүгүшү Г. Лейбниц, И. Ньютон, өзгөчө Л. Эйлердин эмгектери <span cat='ж.кыск' oldv='м-н'>менен</span> байланыштуу. А. г-ны Ж. Лагранж механикага, ал эми Г. Монж дифференциалдык геометрияга колдонушкан. Учурда А. г-нын ыкмалары математика, механика, физика ж. б. илимдердин түрдүү тармактарында кеңири колдонулууда. Тегиздиктеги координаталар ыкмасынын негизги идеясы – сызыктын геом. касиеттери анализдик <span cat='ж.кыск' oldv='ж-а'>жана</span> алг. жол <span cat='ж.кыск' oldv='м-н'>менен</span> анын ''F(x, у)=''О теңдемесинин касиеттерин окуп-үйрөнүү аркылуу аныкталат. Тегиздиктеги А. г-да тегерек конустун тегиздик <span cat='ж.кыск' oldv='м-н'>менен</span> кесилишинен пайда болгон эллипс, гипербола, параболанын геом. касиеттери изилденет. Бул сызыктар табият таанууда, техниканын маселелеринде көп кездешет. Тегиздиктеги А. г-да биринчи <span cat='ж.кыск' oldv='ж-а'>жана</span> экинчи тартиптеги алг. сызыктар изилденет. Биринчи тартиптеги сызыктар түз сызыктар болушат <span cat='ж.кыск' oldv='ж-а'>жана</span> тескерисинче, ар бир түз сызык биринчи даражадагы алг. теңдеме | ||
''Ах+Ву+С=0,'' экинчи тартиптеги ийри сызыктар ''''' | ''Ах+Ву+С=0,'' экинчи тартиптеги ийри сызыктар '''''Ax<sup>2</sup>+Bxy+Cy<sup>2</sup>+Dx+Ey+L=0''''' теңцемеси <span cat='ж.кыск' oldv='м-н'>менен</span> аныкталат. Декарттык тик бурчтуу координаталар системасын тандоо аркылуу сызыктын тендемесин эң жөнөкөй түргө келтирүү <span cat='ж.кыск' oldv='ж-а'>жана</span> аны изилдөө сызыктарды изилдөөнүн <span cat='ж.кыск' oldv='ж-а'>жана</span> класстарга бөлүүнүн негизги методу болуп саналат. Ушундай жол <span cat='ж.кыск' oldv='м-н'>менен</span> экинчи тартиптеги каалаган сызыктын теңдемеси төмөнкү жөнөкөй теңдемелердин бирине келтирилиши мүмкүн:<math display="inline">{x^2 \over a^2 } + {y^2 \over b^2} = 1</math> | ||
''түз сызыктар. Мейкиндиктеги А. г-да тегиздиктеги сыяктуу эле өз ара перпендикуляр үч түз сызыктан турган'' | ''–'' эллипс; | ||
<math display="inline">{x^2 \over a^2 } - {y^2 \over b^2} = 1</math> | |||
''–'' гипербола; | |||
<math display="inline">y_2 = 2px</math> | |||
''–'' парабола; <math display="inline">{x^2 \over a^2 } - {y^2 \over b^2} = 0 \quad \text{ж-а} \quad x_2 = a_2</math> | |||
''– түгөй түз сызыктар. Мейкиндиктеги А. г-да тегиздиктеги сыяктуу эле өз ара перпендикуляр үч түз сызыктан турган'' Охуz ''декарттык тик бурчтуу координаталар системасы түзүлөт. Тегиздиктин М чекитинин координаталары:'' х ''– абсцисса, у – ''ордината,'' z – ''аппликата сандары <span cat="ж.кыск" oldv="м-н">менен</span> аныкталып,'' М(х, у, z) ''түрүндө жазылат. Мейкиндикте тегиздик'' Ax+By+Cz+D=0 ''теңдемеси <span cat="ж.кыск" oldv="м-н">менен</span> аныкталат. Биринчи тартиптеги алг. беттер бир гана тегиздик деп түшүндүрүлөт. Экинчи тартиптеги беттер төмөнкү тендеме <span cat="ж.кыск" oldv="м-н">менен</span> аныкталат: '''Ax<sup>2</sup>+By<sup>2</sup>+Cz<sup>2</sup>+Dxy+Eyz+Fxz+Gx+Hy+Mz+N=''0.''''' Бул беттерди изилдөөнүн <span cat="ж.кыск" oldv="ж-а">жана</span> классификациялоонун негизи ыкмасы – алардын тендемелери кыйла жөнөкөй декарттык тик бурчтуу координаталар системасын тандоо <span cat="ж.кыск" oldv="ж-а">жана</span> ушул жөнөкөй теңдемени изилдөө. Экинчи тартиптеги беттердин негизгилери: <br><math display="inline">{x^2 \over a^2 } + {y^2 \over b^2} + | |||
{z^2 \over c^2} = 1</math> | |||
- эллипсоид; <math display="inline">{x^2 \over a^2 } + {y^2 \over b^2} - | |||
{z^2 \over c^2} = 1</math>- бир көндөйлүү гиперболоид; <math display="inline">{x^2 \over a^2 } + {y^2 \over b^2} - | |||
{z^2 \over c^2} = -1</math>- эки көндөйлүү гиперболоид; | |||
<math display="inline">2z = {x^2 \over a^2 } + {y^2 \over b^2}</math>- эллипстик параболоид; | |||
<math display="inline">2z = {x^2 \over a^2 } - {y^2 \over b^2}</math>- гиперболалык параболоид. | |||
Экинчи тартиптеги бул беттер механикада, катуу телолор физикасында, теориялык физикада, инж. иштерде ж. б. кеңири колдонулат.<br>''Ад''.: ''Александров'' П. С. Лекции по аналитической геометрии. М., 1968; ''Ильин В. А., Позняк Э. Г.'' Аналитическая геометрия. М., 1967. <br> | Экинчи тартиптеги бул беттер механикада, катуу телолор физикасында, теориялык физикада, инж. иштерде ж. б. кеңири колдонулат.<br>''Ад''.: ''Александров'' П. С. Лекции по аналитической геометрии. М., 1968; ''Ильин В. А., Позняк Э. Г.'' Аналитическая геометрия. М., 1967. <br> | ||
''Б. Э. Канетов.'' | ''Б. Э. Канетов.'' |
10:55, 28 Декабрь (Бештин айы) 2022 -деги абалы
АНАЛИЗДИК ГЕОМЕТРИЯ– геометриянын объекттерди (түз сызык, тегиздик, ийри сызык жана экинчи тартиптеги беттер) координаталар методунун негизинде алг. түшүнүктөргө таянып изилдөөчү бөлүмү. Координата жана элементардык алгебранын ыкмалары – А. г-нын негизги изилдөө булактары. Координата ыкмасынын пайда болушу 17-к-да астрономия, механика жана техниканын дүркүрөп өсүшүнө тыгыз байланыштуу болгон. Р. Декарт өзүнүн «Геометриясында» (1637) бул ыкманы так жана толук баяндаган. Бул ыкманын негизги идеялары анын замандашы П. Фермага белгилүү болгон. А. г-нын өнүгүшү Г. Лейбниц, И. Ньютон, өзгөчө Л. Эйлердин эмгектери менен байланыштуу. А. г-ны Ж. Лагранж механикага, ал эми Г. Монж дифференциалдык геометрияга колдонушкан. Учурда А. г-нын ыкмалары математика, механика, физика ж. б. илимдердин түрдүү тармактарында кеңири колдонулууда. Тегиздиктеги координаталар ыкмасынын негизги идеясы – сызыктын геом. касиеттери анализдик жана алг. жол менен анын F(x, у)=О теңдемесинин касиеттерин окуп-үйрөнүү аркылуу аныкталат. Тегиздиктеги А. г-да тегерек конустун тегиздик менен кесилишинен пайда болгон эллипс, гипербола, параболанын геом. касиеттери изилденет. Бул сызыктар табият таанууда, техниканын маселелеринде көп кездешет. Тегиздиктеги А. г-да биринчи жана экинчи тартиптеги алг. сызыктар изилденет. Биринчи тартиптеги сызыктар түз сызыктар болушат жана тескерисинче, ар бир түз сызык биринчи даражадагы алг. теңдеме Ах+Ву+С=0, экинчи тартиптеги ийри сызыктар Ax2+Bxy+Cy2+Dx+Ey+L=0 теңцемеси менен аныкталат. Декарттык тик бурчтуу координаталар системасын тандоо аркылуу сызыктын тендемесин эң жөнөкөй түргө келтирүү жана аны изилдөө сызыктарды изилдөөнүн жана класстарга бөлүүнүн негизги методу болуп саналат. Ушундай жол менен экинчи тартиптеги каалаган сызыктын теңдемеси төмөнкү жөнөкөй теңдемелердин бирине келтирилиши мүмкүн:
– эллипс;
– гипербола;
– парабола;
– түгөй түз сызыктар. Мейкиндиктеги А. г-да тегиздиктеги сыяктуу эле өз ара перпендикуляр үч түз сызыктан турган Охуz декарттык тик бурчтуу координаталар системасы түзүлөт. Тегиздиктин М чекитинин координаталары: х – абсцисса, у – ордината, z – аппликата сандары менен аныкталып, М(х, у, z) түрүндө жазылат. Мейкиндикте тегиздик Ax+By+Cz+D=0 теңдемеси менен аныкталат. Биринчи тартиптеги алг. беттер бир гана тегиздик деп түшүндүрүлөт. Экинчи тартиптеги беттер төмөнкү тендеме менен аныкталат: Ax2+By2+Cz2+Dxy+Eyz+Fxz+Gx+Hy+Mz+N=0. Бул беттерди изилдөөнүн жана классификациялоонун негизи ыкмасы – алардын тендемелери кыйла жөнөкөй декарттык тик бурчтуу координаталар системасын тандоо жана ушул жөнөкөй теңдемени изилдөө. Экинчи тартиптеги беттердин негизгилери:
- эллипсоид; - бир көндөйлүү гиперболоид; - эки көндөйлүү гиперболоид;
- эллипстик параболоид;
- гиперболалык параболоид.
Экинчи тартиптеги бул беттер механикада, катуу телолор физикасында, теориялык физикада, инж. иштерде ж. б. кеңири колдонулат.
Ад.: Александров П. С. Лекции по аналитической геометрии. М., 1968; Ильин В. А., Позняк Э. Г. Аналитическая геометрия. М., 1967.
Б. Э. Канетов.