Difference between revisions of "АНЫКТАГЫЧ"
Jump to navigation
Jump to search
15 -сап: | 15 -сап: | ||
* 2) эгер ''А'' матрицасынын ''а<sub>i</sub>'' сапчасын ''а<sub>i</sub>+ аj'' сапчасына ''i ≠ j'' алмаштыруу аркылуу ''В'' матрицасын алсак, анда ''d(A) = d(B);'' | * 2) эгер ''А'' матрицасынын ''а<sub>i</sub>'' сапчасын ''а<sub>i</sub>+ аj'' сапчасына ''i ≠ j'' алмаштыруу аркылуу ''В'' матрицасын алсак, анда ''d(A) = d(B);'' | ||
* 3) ''d(E<sub>n</sub>) ='' 1. Жогорку ''R'' – чыныгы сандардын көптүгү, ''Мn'' – бардык ''n'' – тартиптеги квадраттык матрицалардын жыйындысы, ''Еn'' – бирдик матрица. 1-3 шарттары ''d'' чагылдыруусун аныктайт, б. а. эгер ''d:M<sub>n</sub>(R)'' → R чагылдыруусу 1–3 шарттарын канааттандырса, анда d(A)=detA. Ушундай жол м-н A-тар аксиоматика түрүндө аныкталат.<br> | * 3) ''d(E<sub>n</sub>) ='' 1. Жогорку ''R'' – чыныгы сандардын көптүгү, ''Мn'' – бардык ''n'' – тартиптеги квадраттык матрицалардын жыйындысы, ''Еn'' – бирдик матрица. 1-3 шарттары ''d'' чагылдыруусун аныктайт, б. а. эгер ''d:M<sub>n</sub>(R)'' → R чагылдыруусу 1–3 шарттарын канааттандырса, анда d(A)=detA. Ушундай жол м-н A-тар аксиоматика түрүндө аныкталат.<br>Ад.: ''Курош А. Г.'' Курс высшей алгебры. М., 1975;''Кострикин А. И.'' Введение в алгебру. М.,1977.<br> | ||
Ад.: ''Курош А. Г.'' Курс высшей алгебры. М., 1975;''Кострикин А. И.'' Введение в алгебру. М.,1977.<br> | |||
''А. А. Чекеев, С. Токсонбаев.'' | ''А. А. Чекеев, С. Токсонбаев.'' |
16:21, 23 -ноябрь (Жетинин айы) 2022 -деги абалы
АНЫКТАГЫЧ , детерминант — n-тартиптеги квадраттык А= ||aij|| матрицасынын
(-1)ta1i1...a1in түрүндөгү мүчөлөрүнүн суммасы,
мында i1i2,..., in – 1, 2, ..., n сандарынын орундаштыруусу, t – орундаштыруунун инверсияларынын саны. Берилген
матрицасынын аныктагычы же , же det А деп белгиленет. А матрицасынын аныктагычы
n! мүчөлөрдөн турат:
n = 1 болсо, det А = а11, n=2 болсо, det А = а11а22 -а21а12 болот. А матрицасынын аныктагычын, анын сапчаларына көз каранды функция түрүндө караса ыңгайлуу: det А = D(a1, ..., an). Анда d:Mn→R(A→detA) чагылдыруусу төмөнкү үч шартты канааттандырат:
- 1) d(A) деген А матрицасынын каалагандай сапчаларынын сызыктуу функциясы:
D(a1, ..., λai + μbi,..., an) = λD(a1, ..., ai + ..., an) + μD(a1, ..., bi,..., an), мында λ, μ ᕮR;
- 2) эгер А матрицасынын аi сапчасын аi+ аj сапчасына i ≠ j алмаштыруу аркылуу В матрицасын алсак, анда d(A) = d(B);
- 3) d(En) = 1. Жогорку R – чыныгы сандардын көптүгү, Мn – бардык n – тартиптеги квадраттык матрицалардын жыйындысы, Еn – бирдик матрица. 1-3 шарттары d чагылдыруусун аныктайт, б. а. эгер d:Mn(R) → R чагылдыруусу 1–3 шарттарын канааттандырса, анда d(A)=detA. Ушундай жол м-н A-тар аксиоматика түрүндө аныкталат.
Ад.: Курош А. Г. Курс высшей алгебры. М., 1975;Кострикин А. И. Введение в алгебру. М.,1977.
А. А. Чекеев, С. Токсонбаев.