Difference between revisions of "АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
1 -сап: 1 -сап:
'''АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ –''' туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффтерин табуу ыкмасы. ''Р(х)'' ж-а ''Q(x)'' алг. көп мүчөлөрдөн турган <math display="inline">{P(x) \over Q(x)}</math>
'''АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ –''' туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффтерин табуу ыкмасы. ''Р(х)'' ж-а ''Q(x)'' алг. көп мүчөлөрдөн турган <math display="inline">{P(x) \over Q(x)}</math>
түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы  '''<math display="inline"> {A \over {(x-a)^k}}; {{Bx+C } \over {(x^2 + px +q)^k}}; (k = 1,2,3...)</math>'''
түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы  '''<math display="inline"> {A \over {(x-a)^k}}; {{Bx+C } \over {(x^2 + px +q)^k}}; (k = 1,2,3...)</math>''' түрүндө туюнтууга болот, мында ''А,В,С, a,p,q'' чыныгы сандар ж-а ''х<sup>2</sup> + рх + q'' квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., <math display="inline">
түрүндө туюнтууга болот, мында ''А,В,С, a,p,q'' чыныгы сандар ж-а ''х<sup>2</sup> + рх + q'' квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис.,  
<math display="inline">
{2x^2-3 \over (x(x^2-4)}
{2x^2-3 \over (x(x^2-4)}
</math>  
</math>  
рационалдык туюнтмасы <math display="inline">{A \over x}+{B \over (x-2)}+{C \over (x+2)}
рационалдык туюнтмасы <math display="inline">{A \over x}+{B \over (x-2)}+{C \over (x+2)}
</math>дөгү бөлчөктөрдүн суммасына ажырайт. ''А, В,'' Сны табуу үчүн эки туюнтманы барабарлап  
</math>түрүндөгү бөлчөктөрдүн суммасына ажырайт. ''А, В,'' Сны табуу үчүн эки туюнтманы барабарлап<math display="inline">  
<math display="inline">  
{(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)}  
{(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)}  
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин <math display="inline">2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math>  түрүнө келет. Бул барабардык ''x'' тин
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин '''<math display="inline">2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math>  т'''үрүнө келет. Бул барабардык ''x'' тин бардык маанилеринде туура, ошондуктан ''х'' тин бирдей даражага ээ болгон мүчөлөрүнүн коэфф-тери барабар болот.  
бардык маанилеринде туура, ошондуктан ''х'' тин
бирдей даражага ээ болгон мүчөлөрүнүн коэффтери барабар болот.  


Анда:<br><math display="inline">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math> системасын чыгарып
Анда: '''<math display="inline">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math>''' системасын чыгарып<math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: <math display="inline">  
 
<math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот.  
 
Берилген туюнтманын ажыратылып жазылышы:
 
 
<math display="inline">  
{(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)}  
{(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)}  
</math>
</math>А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал&#0173;дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис., <math display="inline">  
 
А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал&#0173;дык функцияларды интегралдоодо, көп мүчөнү
көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис.,
 
<math display="inline">  
\int {(2x^2-3) \over x(x^2-4)} dx  
\int {(2x^2-3) \over x(x^2-4)} dx  
</math>
</math> интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат: <math display="inline">  
 
интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат:
 
<math display="inline">  
\int {(2x^2-3) \over x(x^2-4)} dx =  
\int {(2x^2-3) \over x(x^2-4)} dx =  
\int \bigl({{3\over 4x} + {4 \over 8(x\pm2)}+{5\over 8(x+2)}}\bigr)dx =
\int \bigl({{3\over 4x} + {4 \over 8(x\pm2)}+{5\over 8(x+2)}}\bigr)dx =
{3 \over 4} \ln \left\vert x \right\vert  + {5\over 8} \ln \left\vert x^2-4 \right\vert + C  
{3 \over 4} \ln \left\vert x \right\vert  + {5\over 8} \ln \left\vert x^2-4 \right\vert + C  
</math>
</math>.


Ад.: ''Фихтенголъц Г. М.'' Курс дифференциального и
Ад.: ''Фихтенголъц Г. М.'' Курс дифференциального и

15:09, 15 -ноябрь (Жетинин айы) 2022 -деги абалы

АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ – туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффтерин табуу ыкмасы. Р(х) ж-а Q(x) алг. көп мүчөлөрдөн турган түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы түрүндө туюнтууга болот, мында А,В,С, a,p,q чыныгы сандар ж-а х2 + рх + q квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., рационалдык туюнтмасы түрүндөгү бөлчөктөрдүн суммасына ажырайт. А, В, Сны табуу үчүн эки туюнтманы барабарлап, , жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин түрүнө келет. Бул барабардык x тин бардык маанилеринде туура, ошондуктан х тин бирдей даражага ээ болгон мүчөлөрүнүн коэфф-тери барабар болот.

Анда: системасын чыгарып, маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: . А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал­дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис., интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат: .

Ад.: Фихтенголъц Г. М. Курс дифференциального и интегрального исчисления. Т. 2.М., 1969; Смирнов В. И. Курс высшей математики. М., 1974.
Б. Э. Назаркулова.