Difference between revisions of "АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
9 -сап: 9 -сап:
<math display="inline">  
<math display="inline">  
{(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)}  
{(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)}  
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин ''2х<sup>2</sup>'' - 3 = (А + ''В + С)х<sup>2</sup>+ 2(В -С)х -'' 4''А'' түрүнө келет. Бул барабардык ''x'' тин
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин <math>2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math>  түрүнө келет. Бул барабардык ''x'' тин
бардык маанилеринде туура, ошондуктан ''х'' тин
бардык маанилеринде туура, ошондуктан ''х'' тин
бирдей даражага ээ болгон мүчөлөрүнүн коэффтери барабар болот. Анда:<br>
бирдей даражага ээ болгон мүчөлөрүнүн коэффтери барабар болот.  
<math display="inline">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math>


системасын чыгарып ''А = 3/4, В = 5/8, С = 5/8'' маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы:
Анда:<br><math display="inline">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math> системасын чыгарып
 
<math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот.  
 
Берилген туюнтманын ажыратылып жазылышы:





13:46, 15 -ноябрь (Жетинин айы) 2022 -деги абалы

АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ – туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффтерин табуу ыкмасы. Р(х) ж-а Q(x) алг. көп мүчөлөрдөн турган түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы түрүндө туюнтууга болот, мында А,В,С, a,p,q чыныгы сандар ж-а х2 + рх + q квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., рационалдык туюнтмасы дөгү бөлчөктөрдүн суммасына ажырайт. А, В, Сны табуу үчүн эки туюнтманы барабарлап , жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин түрүнө келет. Бул барабардык x тин бардык маанилеринде туура, ошондуктан х тин бирдей даражага ээ болгон мүчөлөрүнүн коэффтери барабар болот.

Анда:
системасын чыгарып

маанилерин табууга болот.

Берилген туюнтманын ажыратылып жазылышы:


А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал­дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мис.,

интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат:

Ад.: Фихтенголъц Г. М. Курс дифференциального и интегрального исчисления. Т. 2.М., 1969; Смирнов В. И. Курс высшей математики. М., 1974.
Б. Э. Назаркулова.