Difference between revisions of "АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ"
1 -сап: | 1 -сап: | ||
'''АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ –''' туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз | '''АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ –''' туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффициенттерин табуу ыкмасы. ''Р(х)'' <span cat='ж.кыск' oldv='ж-а'>жана</span> ''Q(x)'' алгебралык көп мүчөлөрдөн турган <math display="inline">{P(x) \over Q(x)}</math> түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы '''<math display="inline"> {A \over {(x-a)^k}}; {{Bx+C } \over {(x^2 + px +q)^k}}; (k = 1,2,3...)</math>''' түрүндө туюнтууга болот, мында ''А,В,С, a,p,q'' чыныгы сандар <span cat='ж.кыск' oldv='ж-а'>жана</span> ''х<sup>2</sup> + рх + q'' квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., <math display="inline"> | ||
түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы '''<math display="inline"> {A \over {(x-a)^k}}; {{Bx+C } \over {(x^2 + px +q)^k}}; (k = 1,2,3...)</math>''' түрүндө туюнтууга болот, мында ''А,В,С, a,p,q'' чыныгы сандар <span cat='ж.кыск' oldv='ж-а'>жана</span> ''х<sup>2</sup> + рх + q'' квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., <math display="inline"> | |||
{2x^2-3 \over (x(x^2-4)} | {2x^2-3 \over (x(x^2-4)} | ||
</math> | </math> рационалдык туюнтмасы <math display="inline">{A \over x}+{B \over (x-2)}+{C \over (x+2)} | ||
рационалдык туюнтмасы <math display="inline">{A \over x}+{B \over (x-2)}+{C \over (x+2)} | |||
</math>түрүндөгү бөлчөктөрдүн суммасына ажырайт. ''А, В,'' Сны табуу үчүн эки туюнтманы барабарлап, <math display="inline"> | </math>түрүндөгү бөлчөктөрдүн суммасына ажырайт. ''А, В,'' Сны табуу үчүн эки туюнтманы барабарлап, <math display="inline"> | ||
{(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)} | {(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)} | ||
</math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин '''<math display="inline">2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math> т'''үрүнө келет. Бул барабардык ''x'' тин бардык маанилеринде туура, ошондуктан ''х'' тин бирдей даражага ээ болгон мүчөлөрүнүн | </math>, жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин '''<math display="inline">2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A</math> т'''үрүнө келет. Бул барабардык ''x'' тин бардык маанилеринде туура, ошондуктан ''х'' тин бирдей даражага ээ болгон мүчөлөрүнүн коэффициенттери барабар болот. | ||
Анда: '''<math display="block">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math>''' системасын чыгарып, <math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: <math display="block"> | Анда: '''<math display="block">\begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}</math>''' системасын чыгарып, <math>\text{А = 3/4, В = 5/8, С = 5/8}</math> маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: <math display="block"> | ||
{(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)} | {(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)} | ||
</math> | </math>А.к.м. дифференциалдык теңдемелерди чыгарууда, рационал­дык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мисалы, <math display="inline"> | ||
\int {(2x^2-3) \over x(x^2-4)} dx | \int {(2x^2-3) \over x(x^2-4)} dx | ||
</math> интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат: <math display="block"> | </math> интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат: <math display="block"> | ||
20 -сап: | 18 -сап: | ||
Ад.: ''Фихтенголъц Г. М.'' Курс дифференциального и | Ад.: ''Фихтенголъц Г. М.'' Курс дифференциального и интегрального исчисления. Т. 2.М., 1969; ''Смирнов В. И.''Курс высшей математики. М., 1974.<br>''Б. Э. Назаркулова.'' | ||
интегрального исчисления. Т. 2.М., 1969; ''Смирнов В. И.'' | |||
Курс высшей математики. М., 1974.<br> | |||
''Б. Э. Назаркулова.'' |
16:49, 10 -октябрь (Тогуздун айы) 2023 -деги абалы
АНЫКТАЛБАГАН КОЭФФИЦИЕНТТЕР МЕТОДУ – туюнтманын жалпы түрү алдын ала белгилүү болгон учурдагы анын белгисиз коэффициенттерин табуу ыкмасы. Р(х) жана Q(x) алгебралык көп мүчөлөрдөн турган Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle {P(x) \over Q(x)}} түрүндөгү дурус бөлчөгүн (алымынын даражасы бөлүмүнүкүнөн кичине) чектүү сандагы жөнөкөй бөлчөктөрдүн суммасы Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle {A \over {(x-a)^k}}; {{Bx+C } \over {(x^2 + px +q)^k}}; (k = 1,2,3...)} түрүндө туюнтууга болот, мында А,В,С, a,p,q чыныгы сандар жана х2 + рх + q квадраттык үч мөчүсү чыныгы тамырга ээ болбойт. Мис., Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle {2x^2-3 \over (x(x^2-4)} } рационалдык туюнтмасы Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle {A \over x}+{B \over (x-2)}+{C \over (x+2)} } түрүндөгү бөлчөктөрдүн суммасына ажырайт. А, В, Сны табуу үчүн эки туюнтманы барабарлап, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle {(2x^2-3) \over x(x^2-4)} ={A \over x} + {B\over (x-2)}+{C \over (x+2)} } , жалпы бөлүмдөн кутулуп, окшош мүчөлөрүн топтоп, жөнөкөйлөштүргөндөн кийин Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle 2x^2 - 3 = (A + B + C)x^2+ 2(B -C)x - 4A} түрүнө келет. Бул барабардык x тин бардык маанилеринде туура, ошондуктан х тин бирдей даражага ээ болгон мүчөлөрүнүн коэффициенттери барабар болот.
Анда: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} A+B+C \\ 2(B-C) =0 \\ -4A=-3 \end{cases}} системасын чыгарып, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{А = 3/4, В = 5/8, С = 5/8}} маанилерин табууга болот. Берилген туюнтманын ажыратылып жазылышы: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {(2x^2-3) \over x(x^2-4)} ={3 \over 4x} + {5 \over 8(x-2)}+{5 \over 8(x+2)} } А.к.м. дифференциалдык теңдемелерди чыгарууда, рационалдык функцияларды интегралдоодо, көп мүчөнү көбөйтүүчүлөргө ажыратууда, сандык методдордо ж. б. маселелерде кеңири колдонулат. Мисалы, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \int {(2x^2-3) \over x(x^2-4)} dx } интегралынын жогоркудай ажыралышы пайдаланылганда, төмөнкүдөй интегралданат: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int {(2x^2-3) \over x(x^2-4)} dx = \int \bigl({{3\over 4x} + {4 \over 8(x\pm2)}+{5\over 8(x+2)}}\bigr)dx = {3 \over 4} \ln \left\vert x \right\vert + {5\over 8} \ln \left\vert x^2-4 \right\vert + C } .
Ад.: Фихтенголъц Г. М. Курс дифференциального и интегрального исчисления. Т. 2.М., 1969; Смирнов В. И.Курс высшей математики. М., 1974.
Б. Э. Назаркулова.