Difference between revisions of "АРАЛАШ КӨБӨЙТҮНДҮ"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
м
Tag: Reverted
1 -сап: 1 -сап:
'''АРАЛАШ КӨБӨЙТҮНДҮ''' –  <math display="inline">\vec{a}</math>  вектору м-н  <math display="inline">\vec{b}</math> ж-а <math display="inline">\vec{c}</math> векторлорунун вектордук көбөйтүндүсүнүн скалярдык көбөйтүндүсү:<math display="inline">(\vec{a}, \vec{b}, \vec{c})</math>  =  <math display="inline">(\vec{a}, [\vec{b}, \vec{c}])</math>. А. к. төмөнкү касиеттерге ээ: эгер <math display="inline">\vec{a}</math> ''='' 0, же  <math display="inline">\vec{b}</math> = 0, же <math display="inline">\vec{c}</math> ''='' 0 же <math display="inline">\vec{a}, \vec{b}, \vec{c}</math> векторлору компланардуу болсо <math display="inline">(\vec{a}, \vec{b}, \vec{c}) =
'''АРАЛАШ КӨБӨЙТҮНДҮ''' –  <math display="inline">\vec{a}</math>  вектору м-н  <math display="inline">\vec{b}</math> ж-а <math display="inline">\vec{c}</math> векторлорунун вектордук көбөйтүндүсүнүн скалярдык көбөйтүндүсү:<math display="inline">(\vec{a}, \vec{b}, \vec{c})</math>  =  <math display="inline">(\vec{a}, [\vec{b}, \vec{c}])</math>. А. к. төмөнкү касиеттерге ээ: эгер <math display="inline">\vec{a}</math> ''='' 0, же  <math display="inline">\vec{b}</math> = 0, же <math display="inline">\vec{c}</math> ''='' 0 же <math display="inline">\vec{a}, \vec{b}, \vec{c}</math> векторлору компланардуу болсо <math display="inline">(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = - (\vec{b}, \vec{a}, \vec{c}) = - (\vec{a}, vec{c}, \vec{b}) = - (\vec{c}, \vec{b}, \vec{a}), (\vec{a}, \vec{b}, \vec{c}) = 0 </math>.
(\vec{b}, \vec{c}, \vec{a}) =
[[Файл:АРАЛАШ КӨБӨЙТҮНДҮ 36.png|thumb|а, сүрөт]]
(\vec{c}, \vec{a}, \vec{b}) =
[[Файл:АРАЛАШ КӨБӨЙТҮНДҮ_37.png|thumb|б,сүрөт]]
- (\vec{b}, \vec{a}, \vec{c}) =
- (\vec{a}, \vec{c}, \vec{b}) =
- (\vec{c}, \vec{b}, \vec{a}), (\vec{a}, \vec{b}, \vec{c}) = 0 </math>. Компланардуу эмес <math display="inline">\vec{a}, \vec{b}, \vec{c}</math> векторлорунун А. к-сү ал векторлор аркылуу тургузулган оң же терс белгиде алынган параллелепипеддин көлөмүнө барабар: <math display="inline">V = \pm (\vec{a}, [\vec{b}, \vec{c}])</math>'''''.'''''  Эгер <math display="inline">\vec{a}, \vec{b}, \vec{c}</math> векторлору оң үчүлтүктү түзсө, анда көлөм ''V'' оң (+) белги м-н ''(а,'' сүрөт), ал эми
<gallery>
File:АРАЛАШ КӨБӨЙТҮНДҮ_36.png
File:АРАЛАШ КӨБӨЙТҮНДҮ_37.png
</gallery>
сол үчүлтүктү түзсө, көлөм ''V'' терс (-) белги  м-н алынат (б, сүрөт). Эгер ''<math display="inline">\vec{a}, \vec{b}, \vec{c}</math>'' векторлору<br>{X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>}, { Y<sub>1</sub>, Y<sub>2</sub>, Y<sub>3</sub>}, { Z<sub>1</sub>, Z<sub>2</sub>, Z<sub>3</sub>} координа&#0173;таларына ээ болсо, анда ,


Компланардуу эмес <math> \vec{a}, \vec{b}, \vec{c} </math> векторлорунун А. к-сү ал векторлор аркылуу тургузулган оң же терс белгиде алынган параллелепипеддин көлөмүнө барабар: <math display="inline"> V = \pm (\vec{a}, [\vec{b}, \vec{c}]) </math>.
Эгер <math> \vec{a}, \vec{b}, \vec{c} </math>
векторлору оң үчүлтүктү түзсө, анда көлөм ''V'' оң (+) белги м-н ''(а,'' сүрөт), ал эми сол үчүлтүктү түзсө, көлөм ''V'' терс (-) белги  м-н алынат (б, сүрөт).
Эгер ''<math> \vec{a}, \vec{b}, \vec{c} </math>'' векторлору<br>{X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>}, { Y<sub>1</sub>, Y<sub>2</sub>, Y<sub>3</sub>}, { Z<sub>1</sub>, Z<sub>2</sub>, Z<sub>3</sub>}
координа&#0173;таларына ээ болсо, анда,


''<math display="inline">(\vec{a}, \vec{b}, \vec{c}) =
<math display="inline">(\vec{a}, \vec{b}, \vec{c}) =
\begin{vmatrix} X_1 & X_2 & X_3  
\begin{vmatrix} X_1 & X_2 & X_3  
\\ Y_1 & Y_2 & Y_3  
\\ Y_1 & Y_2 & Y_3  
\\ Z_1 & Z_2 & Z_3
\\ Z_1 & Z_2 & Z_3
\end{vmatrix} </math>''
\end{vmatrix} </math>
 
''Б. Э. Канетов.''<br>
''Б. Э. Канетов.''<br>

11:35, 17 -ноябрь (Жетинин айы) 2022 -деги абалы

АРАЛАШ КӨБӨЙТҮНДҮ вектору м-н ж-а векторлорунун вектордук көбөйтүндүсүнүн скалярдык көбөйтүндүсү: = . А. к. төмөнкү касиеттерге ээ: эгер = 0, же = 0, же = 0 же векторлору компланардуу болсо .

а, сүрөт
б,сүрөт

Компланардуу эмес векторлорунун А. к-сү ал векторлор аркылуу тургузулган оң же терс белгиде алынган параллелепипеддин көлөмүнө барабар: . Эгер Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{a}, \vec{b}, \vec{c} } векторлору оң үчүлтүктү түзсө, анда көлөм V оң (+) белги м-н (а, сүрөт), ал эми сол үчүлтүктү түзсө, көлөм V терс (-) белги м-н алынат (б, сүрөт). Эгер Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{a}, \vec{b}, \vec{c} } векторлору
{X1, X2, X3}, { Y1, Y2, Y3}, { Z1, Z2, Z3} координа­таларына ээ болсо, анда,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle (\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} X_1 & X_2 & X_3 \\ Y_1 & Y_2 & Y_3 \\ Z_1 & Z_2 & Z_3 \end{vmatrix} }

Б. Э. Канетов.