Difference between revisions of "АЙЫРМАЛЫК ТЕҢДЕМЕ"

Кыргызстан Энциклопедия Жана Терминология Борбору дан
Jump to navigation Jump to search
Tag: Reverted
(Кайра 28344 жокко Kadyrm (сюзюу))
Tag: Undo
13 -сап: 13 -сап:


<math>F(n; y_n, y_{n+1}, ..., y_{n+m}) = 0.</math>&nbsp;&nbsp;&nbsp;&nbsp; '''(3)'''
<math>F(n; y_n, y_{n+1}, ..., y_{n+m}) = 0.</math>&nbsp;&nbsp;&nbsp;&nbsp; '''(3)'''
<br>
<br>
<br>
Эгер <math>{\partial F\over\partial y_n}\neq 0, {\partial F\over\partial y_n}\neq 0,</math> (3) тендемеде чынында эле ''<big>у</big><sub>n</sub>'' да, ''<big>у</big><sub>n+m</sub>'' да бар болсо, анда (3) тендеме –  &#0173;тартиптеги А. т. же дифференциал – А. т. деп аталат. А. т&#8209;ге келтирилүүчү мат. ж&#8209;а тех. мо&#0173;делдер бар болсо да, анын негизги колдонулуу&#0173;чу аймагы дифференциалдык теңдемелерди жа&#0173;кындаштырып чыгаруу ыкмалары болуп эсеп&#0173;телет.
Эгер <math>{\partial F\over\partial y_n}\neq 0, {\partial F\over\partial y_n}\neq 0,</math> (3) тендемеде чынында эле ''<big>у</big><sub>n</sub>'' да, ''<big>у</big><sub>n+m</sub>'' да бар болсо, анда (3) тендеме –  &#0173;тартиптеги А. т. же дифференциал – А. т. деп аталат. А. т&#8209;ге келтирилүүчү мат. ж&#8209;а тех. мо&#0173;делдер бар болсо да, анын негизги колдонулуу&#0173;чу аймагы дифференциалдык теңдемелерди жа&#0173;кындаштырып чыгаруу ыкмалары болуп эсеп&#0173;телет.


''Б. К. Темиров.''<br>
''Б. К. Темиров.''<br>

20:08, 14 -ноябрь (Жетинин айы) 2022 -деги абалы

АЙЫРМАЛЫК ТЕҢДЕМЕ -- изделүүчү функ­циянын чектүү айырмасын камтыган теңдеме. бүтүн сандуу аргу­менттүү функция;

чектүү айырмалар болсо, mуn туюнтмасы у функциясынын (m+1) чеки­тинде n, n+1, ..., n+т маанилерине ээ болуп, төмөнкү формула алынат:

    (1)

     (2)
түрүндөгү теңдеме А. т. деп аталат, мында у – ­изделүүчү, F – берилген функция. (2)де чектүү айырмаларды алардын туюнтмалары м‑н (1) теңдемеге ылайык изделүүчү функциялардын маанилери аркылуу алмаштырса, анда төмөнкүдөй теңдеме алынат:

     (3)
Эгер (3) тендемеде чынында эле уn да, уn+m да бар болсо, анда (3) тендеме – ­тартиптеги А. т. же дифференциал – А. т. деп аталат. А. т‑ге келтирилүүчү мат. ж‑а тех. мо­делдер бар болсо да, анын негизги колдонулуу­чу аймагы дифференциалдык теңдемелерди жа­кындаштырып чыгаруу ыкмалары болуп эсеп­телет.

Б. К. Темиров.