Difference between revisions of "АЙЫРМАЛЫК ТЕҢДЕМЕ"
1 -сап: | 1 -сап: | ||
изделүүчү функ­циянын чектүү айырмасын камтыган теңдеме. | |||
''<math>У(п) = у<sub>п</sub>(п ='' 0, ±1, ±2,...)''</math>'' | ''<math>У(п) = у<sub>п</sub>(п ='' 0, ±1, ±2,...)''</math>'' | ||
бүтүн сандуу аргу­менттүү функция; | бүтүн сандуу аргу­менттүү функция; |
22:01, 13 -ноябрь (Жетинин айы) 2022 -деги абалы
изделүүчү функциянын чектүү айырмасын камтыган теңдеме. Failed to parse (syntax error): {\displaystyle У(п) = у<sub>п</sub>(п ='' 0, ±1, ±2,...)''} бүтүн сандуу аргументтүү функция;
Failed to parse (syntax error): {\displaystyle Ау<sub>п</sub> ='' г/<sub>п+1</sub> – г/<sub>п</sub>_ ''А<sup>т+1</sup>у<sub>п</sub> = ҢА<sup>т</sup>у<sub>п</sub>),} Failed to parse (syntax error): {\displaystyle &<sup>г</sup>у<sub>п</sub> = Ду<sub>п</sub>, т = } 1, 2, ... чектүү айырмалар болсо, ∆mуn туюнтмасы у функциясынын (m+1) чекитинде п, n+1, ..., п+т маанилерине ээ болуп, төмөнкү формула алынат:
(1)
(2)
түрүндөгү теңдеме А. т. деп аталат, мында у изделүүчү, F – берилген функция. (2)де чектүү айырмаларды алардын туюнтмалары м‑н (1) теңдемеге ылайык изделүүчү функциялардын маанилери аркылуу алмаштырса, анда төмөнкүдөй теңдеме алынат:
(3)
Эгер
(3) тендемеде чынын- да эле уп да, уп+m да бар болсо, анда (3) тендеме тартиптеги А. т. же дифференциал – А. т. деп аталат. А. т‑ге келтирилүүчү мат. ж‑а тех. моделдер бар болсо да, анын негизги колдонулуучу аймагы дифференциалдык теңдемелерди жакындаштырып чыгаруу ыкмалары болуп эсептелет. Б. К. Темиров.