Difference between revisions of "АЙЛАНДЫРУУ"
1 -сап: | 1 -сап: | ||
'''АЙЛАНДЫРУУ,''' <span style="letter-spacing:0.5em;">буруу</span> – геом. өзгөртүүлөрдүн бир түрү. Тегиздиктин ар бир ''М'' чекитин кыймылсыз борбнун айланасында берилген α бурчуна карата ''ОМ = ОМ, | '''АЙЛАНДЫРУУ,''' <span style="letter-spacing:0.5em;">буруу</span> – геом. өзгөртүүлөрдүн бир түрү. Тегиздиктин ар бир ''М'' чекитин кыймылсыз борбнун айланасында берилген α бурчуна карата ''ОМ = ОМ,'' <math>\angle</math>''MOM = α'' болгондой кылып ''М'' чекитине чагылдыруу чекиттин айланасында буруу деп аталат. Мында ''О'' чекити өзү өзүнө чагылдырылат, α бурчу 0 дон 2''π'' ге чейин өзгөрөт. 0°ка буруу теңдеш өзгөртүү деп аталат. α терс болгондо саат жебесинин багыты б‑ча, ал эми α оң болгондо саат жебесинин айлануу багытына каршы багытта чагылдырылат. ''F'' фигурасынын ар бир чекитин айландырса, ''F'' | ||
фигурасы алынат. Ал фигуралар дал келишет, анткени бурууда эки чекиттин аралыгы сакталат. α = π болгондо, борб. симметрия алынат. Бир эле борбордун айланасындагы буруулардын тобу группаны түзөт. Тик бурчтуу координаталар системасында ''М(х, у)'' чекитин координата башталмасынын айланасында α бурчуна карата ''М'(х', у')'' чекитине буруу төмөнкү формула ар кылуу туюнтулат: | фигурасы алынат. Ал фигуралар дал келишет, анткени бурууда эки чекиттин аралыгы сакталат. α = π болгондо, борб. симметрия алынат. Бир эле борбордун айланасындагы буруулардын тобу группаны түзөт. Тик бурчтуу координаталар системасында ''М(х, у)'' чекитин координата башталмасынын айланасында α бурчуна карата ''М'(х', у')'' чекитине буруу төмөнкү формула ар кылуу туюнтулат: | ||
10:08, 12 -ноябрь (Жетинин айы) 2022 -деги абалы
АЙЛАНДЫРУУ, буруу – геом. өзгөртүүлөрдүн бир түрү. Тегиздиктин ар бир М чекитин кыймылсыз борбнун айланасында берилген α бурчуна карата ОМ = ОМ, MOM = α болгондой кылып М чекитине чагылдыруу чекиттин айланасында буруу деп аталат. Мында О чекити өзү өзүнө чагылдырылат, α бурчу 0 дон 2π ге чейин өзгөрөт. 0°ка буруу теңдеш өзгөртүү деп аталат. α терс болгондо саат жебесинин багыты б‑ча, ал эми α оң болгондо саат жебесинин айлануу багытына каршы багытта чагылдырылат. F фигурасынын ар бир чекитин айландырса, F фигурасы алынат. Ал фигуралар дал келишет, анткени бурууда эки чекиттин аралыгы сакталат. α = π болгондо, борб. симметрия алынат. Бир эле борбордун айланасындагы буруулардын тобу группаны түзөт. Тик бурчтуу координаталар системасында М(х, у) чекитин координата башталмасынын айланасында α бурчуна карата М'(х', у') чекитине буруу төмөнкү формула ар кылуу туюнтулат:
Б.Э. Канетов.